
Corrections to scaling and self-duality in the restricted solid-on-solid model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L549

(http://iopscience.iop.org/0305-4470/18/9/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) L549-L556. Printed in Great Britain 
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Received 15 March 1985 

Abstract. The corrections to scaling at and above the roughening transition TR in the 
restricted solid-on-solid model are studied by means of finite-size scaling for semi-infinite 
strips of width 2 to 10. It is shown that at a temperature T,, not far above the roughening 
temperature, where the restricted solid-on-solid model is invariant under the duality 
transformation of the five-state clock model, the fugacity of the sine-Gordon operator must 
vanish. For the dual truncated planar model this means that the core energy of the vortices 
diverges. Between Ts and TR the corrections to scaling do not reach their asymptotic 
behaviour, but are dominated by the contributions from the (V9)4 operator associated 
with the restriction to steps of height one. 

The properties of the vortex unbinding transition in the planar model, and of the 
roughening transition in solid-on-solid ( S O S )  models are well established. They are 
described by the Kosterlitz-Thouless (KT) theory (for a review on surface roughening 
see Weeks 1980). In SOS models interfaces and surfaces are characterised by integer 
valued column height variables h, at the sites of a (square) lattice 

The restricted solid-on-solid (RSOS) model is the special version where only steps of 
height one are allowed, h, - hr8 = 0, * 1. This restriction facilitates numerical studies 
(see e.g. Luck 1981) and seems justified in the context of experimental realisations 
such as the roughening of stepped metal surfaces like Ni (Conrad er a1 1985) and Cu 
(Villain er a1 1984). This restriction has also been applied in studies of the planar 
model. SOS models are equivalent to the planar model under duality transformations 
( h o p s  1977). The RSOS model is dual to the so-called truncated planar model (Luther 
and Scalapino 1977) where the eigenstates of the angular momentum operator (in the 
transfer matrix) are restricted to the values 0 and *l. In the Hamiltonian limit the 
RSOS model is also equivalent to a spin-1 quantum chain (see e.g. Hamber and 
Richardson 1981, Botet and Jullien 1983, Solyom and Zimann 1984, den Nijs 1982). 

The purpose of this paper is twofold. First it is pointed out that at one specific 
temperature JsD the RSOS model is invariant under the duality transformation of the 
five-state clock model. This implies that the fugacity of the sine-Gordon ( S G )  operator 
(associated to the discreteness of the step heights) vanishes, i.e. that the core energy 
of the vortices in the truncated planar model diverges. The behaviour of the corrections 
to scaling in the finite size scaling calculation confirms this. 

0305-4470/85/090549 + OS02.25 0 1985 The Institute of Physics L549 



L550 Letter to the Editor 

Finite size scaling calculations have been applied to the RSOS model before (see 
above). They confirm the KT nature of the roughening transition, but compared to the 
very accurate results for e.g. Ising and Potts models, the convergence is poor. The 
second aim of this calculation is to determine whether a careful study of the corrections 
to scaling for the recently discovered universal amplitude in the scaling behaviour of 
the step free energy (Luck 1982, Nightingale and Blote 1983, Cardy 1984) improves 
the evidence for the KT nature of the transition, or whether there remains no other 
alternative than to increase the strip width by an order of magnitude. Strip width 10 
is a natural upper limit for models with three states per site or per bond like the RSOS 

model, if the largest eigenvalues of the transfer matrix are obtained by multiplication 
while storing the entire wavefunction. It turns out that strip width N = 10 is already 
large enough such that the corrections to scaling are determined by the critical exponents 
and fugacities of the leading irrelevant scaling fields only. The two leading sources 
of corrections to scaling are the SG operator, associated with the discreteness of the 
step height (the vortex operator in the planar model), and the (V(6)4 operator, associated 
with the restriction to steps of height one. Asymptotically the corrections to scaling 
must be dominated by the SG operator, but it turns out that for strip widths 2 to 10 
the contribution from the ( V 4 ) 4  operator dominates. This must be attributed to the 
step-1 restriction, and is enhanced by the vanishing of the SG fugacity at the self-dual 
point. The evidence of the KT nature of the transition improves with the understanding 
of the corrections to scaling, but to obtain a really good test of the KT theory the strip 
width must be increased by an order of magnitude or the RSOS must be modified such 
that the ratio between the fugacities of the SG and ( V 4 ) 4  operator becomes more 
favourable. 

It is useful to summarise the KT theory first. In the high-temperature rough phase 
the height fluctuations do not have a characteristic maximum cut-off. The height-height 
correlation function diverges logarithmically 

( ( h r + r o -  hr0)*) 2: ( rKG)- '  log r, when r >> 1. (2) 

The temperature dependent parameter KG characterises the surface roughness. Since 
for those long wavelength fluctuations the discreteness of the column height variables 
is irrelevant, the rough surface can be described by the Gaussian model (Kosterlitz 
and Thouless 1973). Consider the following version of the sine-Gordon model (JosC 
et a1 1977) 

with -c0<(6,<c0 a continuous variable replacing h,; exp(2ri4,)  the SG operator, 
favouring integer values; and N,  = 0, * l ,  *2 , .  . . an integer valued variable. In the 
limit of zero fugacity z=O this model reduces to the Gaussian model, for small z to 
the standard sine-Gordon model, and for z = 1 to the SOS model. The RSOS model is 
obtained by introducing additional weight functions P( (6, - 4rr): P(x)  = 0 for 1x1 > 
and P (x )  = 1 for 1x1 <$. P(x)  introduces corrections to the pure Gaussian interaction. 
The leading contribution is a (& - 4r1)4 interaction. The RT equations for the sine- 
Gordon model are known exactly for small fugacity 

dx /d l=  y2, dy /d l=  xy (4) 
with x = 2 - r /  K and y = 4rzA (Kosterlitz 1974, Josi et a1 1977, Amit et a1 1980, 
Knops and den Ouden 1980). The high-temperature ( x  < 0) rough phase flows towards 
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the Gaussian model fixed line at z = 0. The fixed point value of the Gaussian coupling 
constant is equal to the surface roughness parameter KG in equation (2). The roughen- 
ing transition takes place at KG = 7712, where the Gaussian fixed line becomes unstable 
with respect to the SG operator. The weight function P ( x )  does not change these 
results, because the interactions it introduces are irrelevant at the Gaussian fixed line; 
the critical exponent of the (V4)4 operator is equal to y 4 =  -2. 

The fugacity parameter y in equations (4) includes both the bare fugacity z and 
the core energy log A. The core energy takes into account the short distance deviations 
from the logarithmic interactions between vortices; A depends on the lattice cut-off 
and varies with temperature. At the roughening transition in the planar and unrestricted 
SOS model y is equal to yR = 0.495 (Kosterlitz 1974, JosC et a1 1977). In the RSOS 

model, as shown below, A vanishes at the self-dual temperature and increases to 
yR = 0.25 f 0.2 at the roughening transition. 

The duality of the RSOS model remains well hidden until one studies the RSOS 

model as a limit case of the five-state clock model (den Nijs 1985a). At one special 
temperature, JsD = log[(&+ 1)/2] = 0.4812, the RSOS model is invariant under the 
duality transformation of the five-state clock model. This implies that at this special 
temperature the core energy A vanishes ( y  =O), and yields the exact value of the 
roughness parameter, KG = 

In analogy with equation (3) ,  the five-state clock model can be visualised as a 
Gaussian model where in addition to the SG operator (to introduce discreteness in the 
steps) also vortices of Burgers’ vector 5 (to introduce the periodicity after five clockwise 
steps) are included (JosC et a1 1977). In the limit where the states dh = *2 are frozen 
out the five-state clock model reduces to the RSOS model. 

The duality equations for clock models are well known (JosC et a1 1977, Elitzur et 
a1 1979) and need not be repeated here. Also the connection between the RSOS 

model and the five-state clock model has been explained elsewhere (see, e.g., den Nijs 
1985a). It is a direct consequence of the general structure of duality transformations 
that at the self-dual point in the RSOS model y vanishes. The duality transformation 
maps the five-state clock model into itself. It maps high temperatures onto low 
temperatures and maps the vortex operator onto the SG operator. It is a surprise to 
find a self-dual point in the RSOS model because this model lacks vortices, while under 
duality its SG excitations transform into vortices. Indeed in general the RSOS model 
maps onto another line in the five-state clock model. This line intersects with the RSOS 
model at one isolated self-dual point JsD. To be consistent the SG excitations must be 
absent in the RSOS model at JsD. 

In the limit where the five-state clock model reduces to the RSOS model the vortices 
are frozen out in an indirect way. The core energy diverges due to a conspiracy between 
the step energies (step heights *2 become forbidden) and the coordination number of 
the square lattice (there is no way to make a vortex of Burgers’ vector 5 without step 
sizes *2 at the four bonds emerging from each vertex). Similarly the bare fugacity z 
in (3) does not vanish. It is the core energy log A which diverges (see (4));  the SG 
operator is redundant at the self-dual point due to a hidden symmetry. 

The roughness parameter is equal to KG = $ T ( X  = -$), because at JsD the critical 
exponent of the vortex and SG operator must be equal (Josi et a1 1977). 

The finite size scaling behaviour of the step free energy in semi-infinite strips of 
width N S 10 confirms the redundancy of discreteness of the steps at J S D .  As usual 
the step free energy is obtained by comparing the largest eigenvalues of the transfer 
matrix, for different boundary conditions at the strip edge, h , ,  = h , ,  + m (for reviews 

(x = -$). 
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see Nightingale (1982) and Barber (1983)). Above the roughening temperature J < J R  

the step free energy goes to zero as 7, = S,/  N.  The amplitude S, is a universal 
function proportional to the surface roughness parameter S,  = i K G m 2  (Luck 1982). 
For the Gaussian model (the fixed line) this f?llows trivially by restoring the periodic 
boundary conditions via the transformation &y = c $ ~ , ~  - mx/ N.  

Figure 1 shows the finite size scaling behaviour of SI. J = 0 corresponds to infinite 
temperature, the self-dual point is located at JsD = 0.4812, and the roughening transition 
at JR = 0.63. The antiferromagnetic RSOS model ( J  < 0) describes a surface, above its 
roughening transition, with loop-like internal degrees of freedom; the transition at 
Js = -0.4815 belongs to same universality class as an Ising model on a lattice with 
transverse vibrations (den Nijs 1985b). 

i 

-08 - 0 L  0 0 4  O B  1 2  
J 

Figure 1. The step free energy times the strip width N of the RSOS model for N = 2 to 8.  

At the roughening temperature the roughness parameter KG has the universal value 
;T (see (4)). JR can be estimated from the sequence of temperatures where S , ( N )  = 
4KG = in, see figure 2. At first sight the convergence looks very good. The approximants 
seem to converge linearly in 1 /  N to the value JR = 0.644 f 0.002. However, according 
to the KT theory the convergence should be logarithmic (as discussed below). The 
asymptotic behaviour has not yet been reached. This is also more directly visible in 
figure 1 ; the KT theory predicts a square root singularity ( J  - JR)”* in the roughness 
parameter KG = 2S1 at JR. This singularity is not yet established for strip widths N G 10. 

The KT nature of a phase transition is usually tested by the behaviour of the 
Roomany-Wyld (RW) approximants for the beta function at the low-temperature side 
of the roughening transition 

(dS’/dJ)dS/dJ 11’* ‘ 
(5 )  

The KT theory predicts an essential singularity in the correlation length 

(6) 
with an exponent (T = i. The beta function is proportional to the first derivative of the 

5-l-  7 - exp( - blJ - J R I - O )  
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Figure 2. Approximants for the roughening temperature from the universal value of the 
amplitude of the step free energy. 

logarithm of the correlation length with respect to temperature (see Barber 1983 for a 
review). 

The RW approximants are shown in figure 3. As usual estimates for the parameters 
are not very accurate: b = 2.2 * 0.1, U = 0.50 * 0.05, and JR = 0.64 * 0.03. The prefactor 
b contains information about the fugacity yR at the roughening transition. The difficulty 
is that b not only depends on yR, but also on the slope dyldx at J R  of the (effective) 

J 

Figure 3. Roomany-Wyld approximants for the beta function pRW = (N', N ) .  
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path that the RSOS model follows through the (x, y )  phase diagram, and on the difference 
between the temperature variables K and J in the sine-Gordon and RSOS model, 

r3 = 2 b2( 1 + dy/ dx)( dK/dJ)yR(  2 + y k).  (8) 

The slope can be approximated by dy/dx=yJ(1/2-yR).  d J / d K  can be estimated 
from the slope of S,(J) =;&(.I) in figure 1 at high temperatures J<< JR, because in 
the sine-Gordon model the roughness parameter KG becomes equal to the bare coupling 
constant K for y << x < 0. dS, /dJ  = 0.28 at infinite temperature J = 0 and increases to 
dS, /dJ  = 0.56 at the self-dual point J = 0.4812, so d J / d K  is of order 1. This leads to 
an order of magnitude estimate of ~ ~ ~ 0 . 2 5 .  This value is comparable to the one in 
the unrestricted SOS model yR = 0.4951 (quoted above). This estimate is also consistent 
with the vanishing of y at the self-dual point; between JsD (in the effective phase 
diagram (x, y )  located at (x, y )  = (-f, 0)) and JR (the line y = -x) one would expect 
that y grows to a value 0.1 <yR<0.4.  

Figure 4 shows the corrections to scaling of the amplitude S ,  above the roughening 
temperature. In the Gaussian model itself there are no finite size corrections to the 
relation S ,  = f K G m 2 .  The RSOS model contains two leading corrections to scaling: 

0.53 1 \. '\ 

i ' S D I  * 
04812 

0 5 2  - - 
'. \ \ 

,04013 
0 2403 * i 

4 
I I ,  1 1 1  

1 l iN  

A 0 45 L 

\\ 
000 '\ 0 4 4  - 

1 l l l l l -  1 1 ---__ 
1 0 9 8 7 6  5 3 

Figure4. Correction to scaling behaviour of the amplitude of the step free energy for 
several temperatures J. 
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from the SG operator, and from the ( V 4 ) 4  operator. Asymptotically the SG exponent 
should dominate, because its critical exponent y,, = 2 - T /  KG is larger than the 
exponent y,= -2 of the (Vr$)4 operator 

SI = i K G +  C y N ( 2 - v ' K ~ ) +  L N - 2 +  . . . .  (9) 

Besides these, also contributions from all multiples and linear combinations of these 
two irrelevant critical exponents are present. At the self-dual point where y = 0 only 
the corrections to scaling from the ( V 4 ) "  operator should remain 

S ,  = + K ~ +  L N - ~ +  . . . . (10) 

Figure 4 confirms this. At JsD = l o g [ ( h +  1)/2] = 0.4812, SI converges with a 1/ N 2  
power instead of the N - ' / 2  power predicted from (9). The amplitude is equal to 
L = -0.233 * 0.003. The extrapolated value SI = 0.628 318 * 0.000 001 is so close to the 
exact value SI = ;KG = f v  that it is justified to conclude that indeed y is equal to zero. 
Moreover this rate of convergence confirms that strip width N = 10 is sufficient to 
reach the scaling region where the corrections to scaling are dominated by the leading 
irrelevant scaling fields. 

The 1/ N 2  power also fits SI( N )  at all other temperatures except those very close 
to the roughening transition; asymptotically, the curves should have a cusp (the 
exponent 2 - T /  KG is larger than -1 for all J > 0.24). The conclusion must be that 
the fugacity y remains too small compared to the coupling constant L ;  for strip widths 
N S 10 the corrections to scaling due to the discreteness of the steps are swamped by 
those due to the step-1 restriction. This is consistent with the estimate y < yR = 0.25 
from the beta function, and the value L = -0.233 at JsD. 

At the roughening transition the SG operator becomes marginal and SI must behave 
as 

SI =;rr+c + L N - ~ +  . . . .  
l + y l o g N  

Ideally the roughening transition should be determined by a fit of the S l ( N )  curves 
in the 0.625<J<0.645 interval to this behaviour. From figure 4 it is clear that this 
can not be done satisfactorily. The SG contribution does not show its full structure 
until N > exp( l /yR)  = 50. Notice that someone unaware of this is likely to fit the data 
to a polynomial in 1/ N, and is led to believe that JR is equal to JR = 0.645 (consistent 
with the l/N$extrapolation in figure 2) with an erroneously small error bar. All the 
curves close to JR can be fitted to (1 1) with an average deviation less than 0.002 (twice 
the diameter of the dots in figure 4) using a least squares fit which optimises C and 
y for fixed values of L. However if y and L are restricted to the intervals y = 0.25 * 0.2 
and L =  -0.11 10.01, the roughening transition narrows down to the interval JR= 
0.633 *0.003. The average deviation of the fit becomes less than 0.001, and C = 
-0.050* 0.006. The value for L is obtained by extrapolation from around the self-dual 
point, L ( J )  = -0.233 + 0.78(J - JsD). 

A closing comment on the five-state clock model phase diagram. A crucial aspect 
in the discussion of the string melting transition in the antiferromagnetic five-state 
clock model (den Nijs 1985a) was that the antiferromagnetic and ferromagnetic floating 
phases do not connect. The present calculation confirms this and improves the estimates 
for the end points of the two melting lines in the RSOS model. The string melting line 
ends at J=-O.4815 (see figure 1 and den Nijs 1985a). The melting line of the 
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ferromagnetic intermediate floating phase ends at the point where the roughness 
parameter is equal to KG = &T = 1.005 (JosC el a1 1977). Figure 4 shows that J = 0.23 
is the endpoint. 

This research is supported by the National Science Foundation under Grant No 
DMR 83-19301. 
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